

Zeroplus Logic Analyzer Multi-LA Stack and LA-Oscilloscope Stack

Preface

As digital technology develops, new 3C products continuously come into the market. To help engineers to release their products earlier, Zeroplus Technology provides more than a hundred bus protocols along with powerful hardware and software, engineers could use them to develop and debug much quickly and accurately. Zeroplus LA is a must tool for debugging or signal analyzing.

Enough Channel Quantity and RAM Size

ZEROPLUS

RAM size is an important key to purchase Logic Analyzer. It concerns time length of captured signal and data amount. During product developing, developers always want to capture complete signal at one time to help their analyzing and debugging. Based on that, Zeroplus LA provides multi-LA stack function. If users want to do long-time measuring, they could connect two or more LAs with the computer to expand RAM size and channel quantity, so as to make the best use of LA.

See Fig. 1, connect one LA with PC, after PC identity it, connect OUT with it and connect synchronism channels between LAs.

Examples in this article are made by LAP-C(322000)

• • • • •	🎼 ZEROPLUS Logic	Analyzer 🛛 🔀
	Please Select Machine	
	Module No	S/N
	LAP-C(322000)	0000000001
	LAP-C(322000)	11081Z-3096
	LAP-C(322000)	11082Z-3007
	LUS Connect	Retry Exit

▲ Fig. 2 : 4 LAs are stacked

When PC connecting with many LAs, a dialog box will appear after software opened, users shall select one LA as master, the software would consider the other three as slaves automatically.

Note:

4 LAs could be stacked at most for Zeroplus LAP-C Series, and only models with 32 channels support this function.

🖗 ZEROPLUS-LAP-O	C(322000) St	andard ¥3.12	(CN01) (S/N:00000000001) - [LaDoc2]						
媥 File Bus/Signal Ti	rigger Run/Sta	op <u>D</u> ata <u>T</u> oo	ls <u>W</u> indow <u>H</u> elp							_ 8 ×
🗋 🧀 🗟 🗯	L 🕰 🍄 💡	P 🖓 📲	🗓 🕨 🕨 🔲 2M 🗖	Mi a Mi 1MHz	→ 𝗤 🗤 10%	🔻 😽 📣 Page	1 - Count		5 5 5	
🕅 📰 🎒 📐	8 @ m	- 100			14 AI 🕓 📲 🍕	Height 60	▼ Trigger Delay	100ns		
Scale:100ns			Display Pos:Ons		A Pos:-1.5us 💌	1 1	A - T = 1.5us ▼		A - B = 3us ▼	
Total:204.8us			Display Range:-2.5us ~ 2.7us		B Pos:1.5us 🗸 👻		B - T = 1.5us ▼		Compr-Rate:No	
Bus/Signal	Trigger	Filter	-2us	A. -Dus	-1us -500ns		500ns	1us 135	s 2us	2.5us
✓ A0 A0		₩ +								
✓ A1 A1				Multi-stacked Logic	: Analyzer Settings					
✓ A2 A2				Stack Type Memory Stack Channel Stack						
🥑 A3 A3				Please select the Logic M1 S/N:00000000 M2 S/N:09031Z-0	Analyzer for stacking 001 002					
♂ A4 A4				✓M3 S/N:11081Z-30 ✓M4 S/N:11082Z-30	096 007					
✓ A5 A5				A0	r Condition					
₹ А6 А6				Rising Edge	OK Cancel	Help				
≪ A7 A7										
60 B0	> < > >		C							~
×					AB		-			
Ready									End	Connected //

▲ Fig. 3 : Multi-LA Stack Settings

Select 'Multi-stacked Logic Analyzer Settings' from Tool menu to open the setting dialog box, see Fig. 3; in it, select stack mode (memory stack or channel stack) and select one channel as synchronism channel to transmit synchronism signal.

Take LAP-C(322000) as an example, if 4 LAs are memory stacked, then 31 channels are left but RAM size expands to 8M per channel. Fig. 4 shows the synchronism channel used to memory stack and channel stack.

Fig. 4 : synchronism channel: any input channel (channel stack), S_O channel (memory stack)

For channel stack, the synchronism channel can be any one channel. If use A2, that means A2 channels of all LAs are parallel connected and receive one pin signal of object under test synchro, so every LA could trigger synchronously.

For memory stack, S_O of each LA shall be connected with the synchronism channel, such as A2, and connect S_O of the first LA with A2 of the second LA, S_O of the second LA with A2 of the third LA, and the like.

Memory Stack

Bus I2C is widely used in electronic products. Take EEPROM read/write data for an example, sometimes users need to analyze statuses of many MCUs and those written into the register, but because of limited memory depth, the problem signal data can't be captured. Now is time to use memory stack to increase memory depth. Below are the cases of testing of continuous signal of I2C standard mode (100 Kbit/s) with/without memory stack.

One LA is used to measure

Fig. 5 : (without memory stack)

With 1 MHz and 2M RAM, the time length of captured I2C signal is 2.097152s.

▲ Fig. 5 : the time of signal captured by one LA

Note : the time of signal captured calculating by the way below : Total RAM size : 2M = 2 * 1024 * 1024 = 2,097,152bits Sampling frequency : $1MHz = 1/1 \Rightarrow 1us$ Result : 2,097,152bits * $1us \Rightarrow 2.097152s$

Copyright © ZEROPLUS TECHNOLOGY CO., LTD. ALL rights reserved. Publication Release: www.zeroplus.com.tw TEL:+886 2-66202225 FAX:+886 2-22234362

Memory Stack

•••• 4 LAs are used to measure (memory stack)

Fig. 6 : (with memory stack)

With 1 Mhz and 2M RAM, the time length of captured I2C signal is 8.388608s.

▲ Fig. 6 : the time of signal captured by four LAs

With memory stack, the time increased by 4 times [2.097152 (s) * 4 (LA) = 8.388608 (s)]. In this way users could capture much more signal.

Memory Stack

How to let LA capture more signal ?

There are 4 status of digital signal - High, Low, Rising Edge and Falling Edge. With the technology of hardware compression and software decompression, Zeroplus LA could process the signal through input port, judge its status and only keep the signal of edge status, so as to optimize the memory storage. Use "stack" and "compression" at same time, much more signal could be captured. (Below is a simple comparison.)

Compression of one LA

With compression activated, the time of captured signal is 9.839807 s.

▲ Fig. 7 : Compression is activated in one LA.

Memory Stack

Compression of 4 stacked LAs

For example as fig. 8 shows, the time of captured signal is 41.940248 s by compression of 4 stacked LA, and you can see the capture time from the fig 8 is not integer multiples add to the fig. 7 (9.839614s). The reason is because of compression technology is only saves signal of edge status from user DUT on logic analyzer, so if the DUT is very high frequency to change signal of logic status, then also on behalf of the RAM have been occupied by more edge signals from the DUT.

Fig. 8 : Compression is activated after stack

ZEROPLUS

Channel Stack

When measuring some bus protocols that needing lots of channels, such as PCI, or measuring multi-device at the same time, engineers often feel frustrated about insufficient channels. Our channel stack function provide the great solution to them!

Take PCI protocol as an example, the parameter AD0-31 alone needs 32 channels. Users could take two Zeroplus LAP-C(322000) LAs to do channel stack, so as to meet multi-channel measure need!

	PROTOCOL ANALYZER PCI			X
t	Configuration Packet Data Form	at Register		
	Pin Assignment			
	CLK: A1	FRAME: A2	▼ IRDY:	A3 💌
	TRDY: A4	DEVSEL: A5	▼ PAR:	A6 💌
	PERR: A7	SERR: BO	▼ IDSEL:	B5 💌
	STOP: B6	C/BE0-3: B1	▼>	B4 💌
	RESET: B7	AD0-31: C0	▼>	F7 💌
	Protocol Analyzer Color			
	Reset	Command	Address	Byte Enable
	Parity	Data	Wait	Stop
		OK	Cancel D	efault Help

▲ Fig. 9 : PCI Parameter Settings

Channel Stack

SEROPLUS-LAP-C(322000) Si	tandard ¥3.:	12(CN01) (S/	N :00000000	001) - [PC]	[通道堆叠.alc]								
🐔 File Bus/Signal Trig	ger Run/St	top Data Ti	ools Window	Help										_ 8 ×
	24 @p	e e • •	■ 4.14805! ▼	2M		₩ 1MHz 际 # 嗣 い	• \$	ກນ ກນ]1 ເ∢ • [2	0% ▼ 🖗 🚸 Page § 🍖 Height 61	e 1 🗸 🤇 0 🗸 Trigger 1	Count 1 Delay 1u:	• aa # #	5	
Scale:194.148055ns Total:2.097152s			Display Po Display Ra	s:563.757769m nge:563.75291	ns 15ms ~ 563.76	A 54623ms <u>B</u>	Pos:-2 Pos:-2	108.706ms 108.676ms	▼	A - T = 208. B - T = 208.	706ms - 576ms -	A - E Com	= 30us pr-Rate:No	
Bus/Signal	Trigger	Filter	<u></u>	563.753886ms	563.754	357ms 563.3	755827n	ns 563.7	56798ms 563.757769	9ms 563.75874	ms 563.75971	ms 563.760681ms	563.761652ms	563.762623ms
▼ Bus1 (PCI)	.∞	. ∞ •				Wai	t	Address	0X0000001	Parity : OXO	0X00000001	Byte Enable : 0X4		
● A0 (SYNC	z	8		1	.00us				2us	lus	lus			20us
● A1 M1 A1	8								Multi-stacked Logic	: Analyzer Settin	ss 🔀			
6 A2 M1 A2	8								Stack Type					
⊂ A3 M1 A3	8								 Channel Stack Please select the Logic 	Analyzer for stacki	ıg			
• A4 M1 A4	<	<	<						M1 S/N 0000000	001				~
× Setting Refresh	Export	Synch Par	rameter											
Packet # Nar 1 Bus1(P Packet # Nar	ne T CI) -20 me Ti	'imeStamp 09.714ms meStamn	Reset Reset	Command	Parity	Wait			- Synchronous Chanr A0	∎el ▼				<u> </u>
2 Bus1(P	CI) 56	53.63ms	00000001	E	1	Wait			– Synchronous Trigge	er Condition				
Packet # Nar 3 Bus1(P	ne Ti CI) 56	mestamp 3.756ms	Address 00000001	Command F	Parity	00000001	Byt	e Enable 4	Rising Edge			Data Byte 00000001	Enable Pa 6	n ty 1
Packet # Nar 4 Bus1/P	ne Ti CD 56	meStamp 3.883ms	Address	Command	Parity 1	Wait				OK Cancel	Help			
× .				~		0.0000	-							-
					******	7								
Ready	1												End!	Connected //

▲ Fig. 10 : Channel stack is activated

As Fig. 10 shows, users shall set one synchronism channel also, and besides one synchronism trigger condition. When the signal received by the synchronism channel fits the trigger condition, the signal captured by all LAs would do data aligning.

Below table shows the difference between these two stack modes of Zeroplus LAP-C(322000).

LA Quantity Mode	One LA	Two LAs (stack)	Three LAs (stack)	Four LAs (stack)
Memory Stack	2 M	4 M	6 M	8 M
Channel Stack	32	62	93	124

▲ Tab. 1 Comparison of Two Stack Modes

Using instruments flexibly is the good way to meet the communication specification of different kinds within all projects when debugging. That helps products come into the market earlier !

Analog and Digital Signals Could Be Displayed Together

ZEROPLUS

How to win in the fierce-competition digital area ? As the saying goes, ' Good tools are prerequisite to the successful execution of a job. " Zeroplus LA supports stacking with Oscilloscope, and that could allow analog and digital signals be displayed together when developing DAC and ADC projects.

Zeroplus Logic Analyzer ~ LA-Oscilloscope Stack

LA - Oscilloscope stack is often used in DAC and ADC developing if digital and analog signals need to be analyzed together. Users could set the Oscilloscope and display its waveform in LA software.

Zeroplus Logic Analyzer ~ LA-Oscilloscope Stack

For example as fig. 11 shows, the connect Oscilloscope and LA with PC through USB port, then can use the LA channel hook and Oscilloscope probe together with the device under test (DUT), at last connect T_O of LA with T_I of Oscilloscople, that's done for the stack. When if trigger of the conditions are satisfied in LA, will the LA at the same time, it would inform Oscilloscope by sending synchronism signal through T_O, and then PC would display 2 type signals (Digital and Analog) of both instrument in the software.

▲ Fig. 12 : LA-Oscilloscope Stack Setting Interface

Zeroplus Logic Analyzer ~ LA-Oscilloscope Stack

Select 'DSO-stacked Settings' from Tool menu, in the opened dialog box set the mode of the software to display the data transmitted by Oscilloscope (supporting only 4 channels). Click the button 'DSO Settings' to set the Oscilloscope. See Fig. 13.

Connection Mode			Tektronix GwInstek
⊙ USB	TCP/IP C AUT	0	PicoScope Agilent
🔲 Use the Agilent GPI	3-to-USB Switching Card		BK Precision
Stack Parameters			
Current Connect Model:			
🗖 Sampling Frequency: 📘	Hz		
🗖 Stacking Delay:	Ps		
Trigger Position:	%		
Trigger Channel:	-	V	
Trigger Type			
Activate			
C Trigger Edge	~		
C Video	~		
C Pulse	-	ns	
Polarity:	Upper Limit:	ns	
Trig When:	Lower Limit:	ns	

▲ Fig. 13 : Select Oscilloscope model.

So far Zeroplus LA could stack with Oscilloscope of Tektronix, Gwinstek, Picoscope, Agilent, Owon and BK Precision, see Tab. 2.

Oscilloscope Manufacture	Models	On-line Mode
	TDS1000 Series	USB
	TDS2000 Series	USB
Tektronix	TDS3000 Series	USB, TC/IP, GPIB
	TDS5000 Series	GPIB
	TDS6000 Series	In-built GPIB
OWON	SDS7102 Model	USB
PicoScope	3206B Series	USB
Guilestelr	GDS-1000A Series	USB
GWINSTEK	GDS-3000 Series	USB
Agilent	DSO 5000 Series	USB
BK Precision	2540B, 2542B, 2540B-GEN, 2542B-GEN	USB

▲ Tab. 2 : Oscilloscope models and on-line modes supported by Zeroplus LA

Zeroplus Logic Analyzer ~ LA-Oscilloscope Stack

Example: LA-Oscilloscope Stack

Input a signal of 8 bits Up Counter (0~255) to DAC IC, then which DAC would convert it to 0 - 5V Voltage signal (Analog) and output it, see Fig. 14.

▲ Fig. 14 : Image of analog and digital signals displayed together.

In Fig. 14, we could see the parallel value (0x00 ~ 0xFF) transmitted by Up Counter in the digital signal. In the above analog signal, DS0_CH1 is 0-5V voltage converted by DAC IC, and DSO_CH2 is the synchronism signal of LA calling Oscilloscope. Comparing these two signals, we could understand the analog waveform change generated by inputting parallel value into DAC. When the trigger condition establishes, LA would call Oscilloscope by synchronism signal and display the captured signal in the software.

Summary

Zeroplus LA is always a great helper for engineers. It not only provides more than one hundred protocol analyzers, which could help engineers solve various problems in circuit developing, but also has a powerful software, which could meet various requirements of signal measurement. Hope we can enter into the digital measurement era with our counterparts and work together to improve the capability of signal analyzing.

Instrument Division / FAE Sam